
TIGHT COMPLEXITY BOUNDS FOR PARALLEL COMPARISON SORTING

Noga Alon
Department of Mathematics

Tel Aviv University
and

Bell Communications Research

Yossi Azar
Department of Computer Science
School of Mathematical Sciences

Tel Aviv University

Uzi Vishkin
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

and
Tel Aviv University

ABSTRACT

The time complexity of sorting n elements using
p ~ n processors on Valiant's parallel comparison tree
model is considered. The following results are obtained.

1. We show that this time complexity is
e(Iogn/log(1 +p/n».
This complements the AKS sorting network in settling
the wider problem of comparison sort of n elements by p
processors, where the problem for p ~ n was resolved.
To prove the lower bound, we show that to achieve time
k ~ logn, we need o (kn l +l/k ) comparisons. Haggkvist
and Hell proved a similar result only for fixed k.

2. For every fixed time k, we show that: (a)
O(n l +l/k 10gn l/k ) comparisons are required,
(0 (n 1+11k logn) are known to be sufficient in this case),
and (b) there exists a randomized algorithm for
comparison sort in time k with an expected number of
O(n l +l/k ) comparisons. This implies that for every
fixed k, any deterministic comparison sort algorithm
must be asymptotically worse than this randomized
algorithm. The lower bound improves on Haggkvist­
Hell's lower bound.

3. We show that "approximate sorting" in time 1
requires asymptotically more than nlogn processors.
This settles a problem raised by M. Rabin.

I. INTRODUCTION

Apparently, there is no problem in Computer Science
which received more attention than sorting. [Kn-73], for
instance, found that existing computers devote
approximately a quarter of their time to sorting. The
advent of parallel computers stimulated intensive
research of sorting with respect to various models. of
parallel computation. Extensive lists of references which
recorded this activity are given in [Ak-85], [BHe-86]
and [Th-83].

Most of the fastest serial and parallel sorting
algorithms are based on binary comparisons. In these
algorithms the number of comparisons is typically the
primary measure of time complexity. Any lower bound
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on the number of comparisons required for a problem,
clearly implies a time lower bound for such algorithms.
In the present paper, we restrict our attention to a
parallel comparison model, introduced by Valiant [Va­
75], where only comparisons are counted. In measuring
tIme complexity within this model, we do not count steps
in which communication among the processors,
movement of data and memory addressing are
performed. We also avoid counting steps in which
consequences are deduced from comparisons that were
performed. Note that our lower bounds apply to all
algorithms, based on comparisons, in any parallel access·
machine (PRAM) including PRAMs which allow
simultaneous access to the same common memory
location for read and write purposes. See [BHo-82] for
a discussion on hierarchy of models that implies this.

In a serial decision tree model, we wish to minimize
the number of comparisons. The goal of an algorithm in
a parallel comparison model is to minimize the number
of comparison rounds as well as the total number of
comparisons performed.

Let k stand for the number of comparison rounds (time)
of an algorithm in the parallel comparison model. Let
c (k, n) denote the minimum total number of
comparisons required to sort any n elements in k rounds
(over all possible algorithms).
The known 0 (n logn) comparisons lower bound for
sorting in a serial decision tree model implies that, for
any k, c(k, n) = O(nlogn). This lower bound can be
matched by upper bounds as follows: For k = c logn,
the sorting network of [AKS-83] implies
c(k, n) = O(nlogn), where c > 0 is a constant which
is implied by the network. For' k > clog n, the result
c (k, n) = 0 (n logn) also holds. To see this, simply
simulate the AKS network by slowing it down to work in
k rounds.
For k = 1, c(l, n) = lh(n 2-n). This is since any
sorting algorithm which works in one round must
perform all comparisons. Otherwise, suppose that a
dispensed comparison is between two successive elements
in the sorted order; the algorithm will clearly fail to
distinguish their order. On the other hand, observe that
performing all comparisons simultaneously yields a one
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10g(1 + l!...)
n

The factor n log n represents the serial lower and upper
bounds for sorting using comparisons. The other factor
represents the deviation from optimal speed up.

All the remaining results, appearing in Section 3,
apply to a fixed number of rounds k. Our main result in
this part is that for every fixed k, there is an explicit
randomized algorithm for sorting n elements in k rounds
whose expected number of comparisons is smaller than
any possible deterministic algorithm. This is an
immediate corollary of results 3 and 4 below.

Result 3. We present a randomized algorithm whose
expected number of comparisons is 0 (n 1+11k) .

Result 4. For every deterministic parallel sorting
1+.1

algorithms c (k, n) = 0 (n k (logn) 11k).
This improves on Haggkvist and Hell who showed that
for every fixed k, c(k, n) = n (n 1+1Ik ).

Notice that the only difference between our improved
lower bound and the previously known one, is an extra
factor of (log n) 11k. Nevertheless, this is precisely the
factor that separates the asymptotic behavior of the best
randomized algorithm from that of the best deterministic
one.

Result 2. Section 2 presents also upper bounds which
match the lower bounds of Result 1. Specifically, we
describe an explicit parallel comparison algorithm that

I . 0 lognsorts n e ements In rounds using
10g(1 + l!...)

n
p ~ n processors. By explicit we mean that we actually
describe such an algorithm, and not merely prove its
existence using counting arguments.
To understand better the significance of these lower and
upper bounds (results 1 and 2) we will use one more
equivalent formulation of the results.

Corollary 5. Suppose we are given p ~ n processors to
sort n elements. The total number of comparisons
performed by the fastest parallel sorting algorithm is

e [log (t~npin) n IOgn) .

Suppose we have to sort n elements and let A be a
set of pairs of these elements. Denote p = IA I. The set
A is an approximate sorting in one round if knowing the
relative order of each fair in A, provides the relative

order of 0 - 0 (I) (~ out of the (~ ) pairs without

any further comparisons of pairs of elements.

Result 5. We show that here p must be asymptotically
bigger than n log (i.e., n log n = 0 (p », thus settling a
problem posed by Rabin (cf. [BHe-8S]).

~ 1,

1

1 + l!... > n k and
n e

Hence, for p ~ n,

k=O

therefore k >

1+.1
n k

Proof p > -- - n implies
e

logn

RESULTS

We start with the main result of Section 2:

Result 1. c(k, n) > k[ n

1

:
t - n for any k, n

where e is the base of the natural logarithm.

Corollaries of Result 1:

1 + log (1 + l!...)
n

k = n [ logn .

logO + ;)

Corollary 3. If p = n logfj n for (j > 0 then the
number of rounds required to sort n elements is

k = n [,8I~;~gn)' This is an immediate corollary of

Corollary 2.

A parallel algorithm is said to achieve optimal speed up
'f . ... . I Seq (n) h
1 Its runnIng tIme IS proportIona to ,were

p
Seq (n) is a lower bound on the serial running time, n is
the size of the problem being considered and p is the
number of processors used.
Corollary 4. If the number of processors is larger than
n by an order of magnitude then it is impossible to
design an optimal speed up comparison sorting
algorithm. More formally, suppose that the number of
processors p is not 0 (n) (i.e., n = 0 (p» then there is
no (comparison) sorting algorithm which runs in time

Corollary 2. The number of rounds required to sort n
elements using p ~ n processors is

logn

round algorithm in the parallel comparison model that
matches exactly this lower bound.

So, it remains to consider the situation for
1 < k ~ c logn.

Suppose we have p processors with the interpretation
that each processor can perform at most one comparison
at each round. Observe that kp ~ c (k, n) or
p ~ c (k, n) / k. Therefore,

Corollary 1. Any k -round (k ~ 1) rarallel algorithm
1+-

n k
for sorting n elements needs p > -- - n processors.

e
1+1..

This yields p = 0 (n k) for k ~ c logn where c is any
constant such that 0 < c < 1.
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Using a similar technique we can show that for every
fixed k, n(n 1+1/(2

k
-O . Oogn)2/(2

k
-O) comparisons are

needed to find the median of n elements in k rounds.
(An upper bound of 0(n 1+1/(2

k
-O. Oogn)2-2/(2

k
-O)

was proved by Pippenger [Pi-86]') This improves by a
factor of Oog n)2/{2

k
-I> Haggkvist-Hell's lower bound

[HH-801 and separates the asymptotic behavior of the
best algorithm for selecting the maximum (which is
e(n 1+1f(2

k
-O), see [HH-80]) from that for selecting the

median. The detailed proof of this last result will appear
somewhere else.

More on the significance of the results. In studying the
limit of parallel algorithms it is interesting to identify
asymptotically the minimal time k that can be achieved
by an optimal speed up algorithm. We call this minimal
time the parallelism break point of the problem being
considered. [Va-75] proved that eOoglogn) is the break
point for finding the maximum among n elements.
[BHo-82] gave a lower bound and [Kr-83] an upper
bound to prove that eOoglogn) is the break point for
merging two sorted lists, where n is the length of each
list. The above two lower bounds were also obtained in
a parallel comparison Inodel (which is therefore often
referred to as Valiant's model). The present paper
enables us to add sorting to the list of problems for
which the break point was identified. Specifically,
Corollary 4 complements the sorting network of [AKS­
83] in proving that eOogn) is the break point for sorting
n elements. It is interesting to compare the "pattern" in
which the break point occurs in these three problems.
The elegant lower bound proofs of Valiant and Borodin­
Hopcroft show that n Ooglogn) rounds are required if n
processors are used for the problems of finding the
maximum and merging, respectively. The algorithms of
Valiant and Kruskal run in 0 Ooglogn) rounds using

n
I I processors for each of these problems,
og ogn

respectively. This isolates distinctly the break points for
these two problems since the asymptotic time bound can
not be improved by increasing the number of processors

n
from I I to n. On the other hand, such degenerate

og ogn
isolation does not occur in the sorting problem.
Specifically, Corollary 5 implies that increasing the
number of processors asymptotically always yields
asymptotic decrease in the number of comparison
rounds.

More on extant work. Let us review works· on
sorting n elements in a parallel comparison model.
Recall that Ha'ggkvist and Hell [HH-81] proved that if
k, the number of rounds, is constant, then n (n 1+lIk)
processors are required to sort n elements. Using
random graphs, Bollobas and Thomason [BT-83] proved
that there is an algorithm that uses p =0 (n 3f210gn)
processors and sorts n elements in two rounds. Bollobas
and Hell [BH-85] (see also [Pi-86D showed that n
elements can be sorted in a constant number of rounds k
using O(n 1+1/k logn) comparisons. This almost matches
the Haggkvist-Hell lower bound.
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Remark. Conversely, these results imply that for
p = 0 (n 1+E) processors, it is impossible to sort in less
than k = liE rounds, but we can sort in k = lIE + I
rounds. So these upper and lower bounds are at most
one round apart when k is constant.

However, a closer look at this lower bound of
Haggkvist and Hell reveals the following. They actually
proved that if k, the number of rounds, is a variable,

n l+l/k n
then p > 2k +l k - 2k processors are required to sort

n elements. For constant k, Result 4 provides an
asymptotically better bound. Next, we compare
Haggkvist-Hell's result with Corollary J. Observe, that
their proof implies that p = n (n I +11k) only when k is
constant and therefore for non-constant k Corollary 1 is
stronger. Moreover, their result becomes trivial for
k ~ .Jlogn. This is since for this range their result
implies an asymptotic bound which is 0 (n) for the
number of processors p as can be readily verified. On
the other hand, Corollary 1 states that
p > n l +1/k le - n for every k. As was indicated above,
this implies that p = n (n I +11k), for any k < clog n,
where 0 < c < 1 is a constant.

We note a few additional papers whose titles are
related to the title of the present paper. [Le-84]
proposed an adaptation of AKS network to bounded
degree n-node networks. [MW-85] gave a .Jlogn lower
bound for parallel sorting by n processors in some
variant of PRAM (see also [Be-86] for a stronger
result) . Their model is not comparable to the parallel
comparison model considered here. The trivial logn
lower bound for parallel sorting by n processors in the
parallel comparison model does not allow non
comparison algorithms like bucket sort. On the other
hand, ranking an element among n other elements can
be done in one round of comparisons using n processors
in the parallel comparison model, while their PRAM
seems to require non constant time using n processors.

Results 3 and 4 separate deterministic and
randomized complexity for sorting in a fixed nunlber of
rounds. A result of a similar flavor for the problem of
selecting the l-th out of n elements is known.
Specifically, Reischuk [Re-81] gave a randomized
comparison parallel algorithm for selection whose
expected running time is bounded by a constant, using n
processors. Together with the lower bound of [Va-75]
for finding the maximum among n elements, we
conclude that there exists a randomized algorithm for
selection that performs better than any of its
deterministic counterparts.

2. TIGHT LOWER AND UPPER BOUNDS FOR

NOT NECESSARILY CONSTANT
NUMBER OF ROUNDS
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2.1 The parallel computation model

Let V be a set of n elements taken from a totally
ordered domain. The parallel comparison model of
computation allows algorithms that work as follows.
The algorithm consists of time steps called rounds. In
each round binary comparisons are performed
simultaneously. The input for each comparison are two
elements of V. The output of each comparison is one of
the following two: < or >. Note that we do not allow
equality between two elements of V. This can be done
without loss of generality, since we define the order
bet\\'een two equal input elements to be the order of
their indices. Each item may take part in several
comparisons during the same round.
Remark. Our discussion uses the following
correspondence between each round and a graph. The
elements are the vertices. Each comparison to be
performed is an undirected edge which connects its input
elements. Each computation results in orienting this
edge from the largest element to the smallest. Thus in
each round we get an acyclic orientation of the
corresponding graph, and the transitive closure of the
union of the r oriented graphs obtained until round r
represents the set of all pairs of elements whose relative
order is known at the end of round r.

Suppose we performed r rounds where r > 0 is some
integer. Consider any function of V that can be
computed using the comparisons performed in these r
rounds without any further comparisons of elements in
V. Our model defines such a function to be computable
following round r. Note that this definition suppresses
all computational steps that do not involve comparisons
of elements in V. Which comparisons to perform at
round r + 1 and the input for each such comparison
should be functions which are computable following
round r. Weare interested in sorting the elements in V
from the smallest to the largest in k rounds, where the
integer k can be either constant or a function of n.

Recall that c (k, n) denotes the minimum total
number of comparisons required to sort any n elements
in k rounds (over all possible algorithms).

2.2 The lower bound

Let us restate the main theorem of this section.

The Lower Bound Theorem:
1+1..

n k
c(k, n) > k(-- - n) for any k, n ~ 1, where e is

e
the base of the natural logarithm.

Proof By induction on k and n.

The base of the induction. For k = 1 and every
n2 - n n2

n ~ 1, clearly c(l, n) = --- > - - n. For
2 e

n = 1, 2 and every k ~ 1 c (k, 1) ~ 0 > k (l - 1),
e

4 21+1/k
c (k, 2) > 0 > k (- - 2) ~ k(-- - 2).

e e
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The inductive assumption: Given k, n, if k' ~ k and
n' < n, or k' < k and n' ~ n, then

1+1..,
, k

c(k', n') > k'(n-- - n').
e

Take any k-round algorithm for sorting a set V of n
elements. The first round of the algorithm consists of
some set E of comparisons. Recall that we look at them
as edges in the graph G = (V, E) . An independent set
in G is a subset of vertices from V such that no two
vertices are adjacent by an edge in E. An independent
set is maximal if it is not a proper subset of another
independent set. Consider the graph of the first round
of comparisons. Let S be a maximal independent set in
this graph ~nd denote x = IS I. Each of the n - x
elements of S must share an edge with an element of S,
or otherwise S is not maximal. For our lower bound
proof, we restrict our attention to linear orders on V, in
'Y.hich each element of S is greater than each element of
S. For any of these orders it is impossible to obtain any
information regarding th~ relation between two elements
of S or two elements of S using com.parisons between an
element of S and an element of S. Therefore, aside
from these n - x comparisons, there must be at least
c (k - 1, x) comparisons to sort S and at least
c (k, n - x) comparisons to sort S. This implies the
following recursion,

c (k, n) ~ c (k, n - x) + n - x + c (k - 1, x) ,

by the inductive assumption

[
(n - x) 1+Ilk ]> k e - (n - x) + (n - x)

[
xl+l/(k-I) ]

+ (k - 1) - x .
e

By opening parentheses and permuting terms we get

!. (n - x)I+I/k + !-..=..l x 1+1/(k-I) + n - kn
e e

[[ ]

1+I/k
=:nI+l/k l-~

[
1 ] x1+1/(k-I) 1 e]

+ 1 - k n 1+1/k + k n 1/k - kn .

Recall the Geometric-Arithmetic Mean Inequality:
aa +{3b ~ a cx b{3, where a+{3= 1 a,{3,a, b ~ O. By
taking

1 1 x 1+1/ (k - I) e
a = 1 - k' {3 = k' a = n1+IIk ' b = n1/k '

we get that the last expression is
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k [n l
+

llk
)= -; nI+ llk - kn = k --e- - n .

Recall Bernoulli's Inequality: (1 - a)t ~ 1 - at for
t ~ 1, a ~ 1. This implies,

~ ; nI+
llk [1 - ~ [1 + ~] + ~ [1 + ~]] - kn

Recall that the increasing sequence [1 + ~ )k

converges to e and therefore, eIlk > 1 + ~. This

implies

~ ; n I+I/k [[1_ ~ ]I+llk + ~ [1 + ~]] - kn .

This completes the proof of the Lower Bound Theorem.

2.3 The upper bound

Theorem. Given n elements from a totally ordered
domain, there is an explicit algorithm in a parallel
comparison model for sorting these elements in

o [IOg(;o~~/n) ] rounds using p ~ n processors.

Proof First recall the AKS comparison network. It
sorts n elements in 0 Oogn) rounds using p = n 12
processors (i.e., nl2 comparisons in each round). We
give an algorithm in a parallel comparison model. Each
round of the new algorithm is called superround. The
algorithm is derived from AKS network by simply
shrinking 0 = O.510g(1 +pln) rounds of this network into
one superround.
The construction of the algorithm is based on the
following idea. We aim that the following Assertion will
hold.
Assertion. After superround r, the following things are
available: (1) The pair of input elements for each
comparison performed in the first or rounds of AKS
network. (2) The result of each such comparison.

This Assertion implies that after 0 (I (IOgn / »
og 1+p n

superrounds the results of all comparisons of AKS
network are available and the sorting is completed (since
it is computable).
We show how to satisfy the Assertion for any
superround r. For r = 0 the Assertion triviaIiy holds.
We show how to satisfy the Assertion for superround r
assuming that it is satisfied for any superround < r.
The fact that we relate to a comparison network implies
that each element, which is compared in round
o(r - 1) + i, where 1 ~ i ~ 0, is one of at most 2i - l

But 0 = 0.510g (1 + £..), and therefore, this number of
n

n log (l+£.) n
comparisons is not more than - 2 n ~-2 ~ 2

[1 + .;] = n ; p ~ p. So, there are enough

processors to perform all these comparisons.

3. SORTING IN A FIXED NUMBER OF ROUNDS

3.1 Randomized algorithms

Theorem 3.1 For any k ~ 1, there is an explicit
randomized algorithm for sorting n elements in k
rounds, whose expected number of comparisons E (n, k)
is at most c(k) . n l+l/k , where c(k) is some constant
depending on k only.

Proof By induction on k. For k = 1 the result is
trivial. Assuming it holds for k - 1 and every n, we
prove it for k. Put t = rn 11k 1. In the first round our
algorithm chooses randomly a set T of t - 1 elements
from the set V of n elements we have to sort and
compares ea~h of them to every v E V (including the
other elements of T). After this round, the set V - T
will be broken into t blocks AI' A 2 ,... , At, such that for
each i < j and Qi E Ai' Qj E A j Qi is smaller than Qj'

elements which are outputs of comparisons of the first
o(r - 1) rounds (or input elements). By the inductive
assumption, each of these outputs is available following
superround r - 1. Therefore, each ~om~arison in round
o(r - 1) + i, is actually one of (2'-1) possible pairs.
All we do is perform all these possible comparisons
simultaneously (for 1 ~ i ~ 0). These comparisons
clearly include the actual comparisons performed by
AKS network in these rounds. It remains to show that
this construction also yields the pairs of input elements
to each comparison which was actually performed in
each of these rounds. For this we show by simple
induction that the actual pair of each comparison, as
well as its result are available, for all rounds
~ 0(, -:- 1) + i, 0 ~ i ~ o. For i = 0, this follows
from the inductive assumption of the Assertion for
, - 1. Suppose that for all rounds < 0(' - 1) + i, the
actual pairs compared, as well as their result are
available. Each element participating in round
0(, - 1) + i is an outcome of the actual comparisons of
preceding rounds and their results. They are known by
the inductive assumption. Therefore, the input pair for
each such comparison is known. We already argued that
the result of each such comparison was found by our
algorithm. This completes the proof of the induction for
i. Taking i = 0, we complete the inductive proof of the
Assertion.

The number of comparisons that the algorithm has to
perform in each superround is:

o 40
!!:.. ~ (2i - l )2 < !!:.. _ < !!. . 220

2 i-I 2 3 2 .

[[ ]

1+l/k 11k ]

1 - ~ + nl:llk2 ;llk2 - kn .'" ~ n l + l / k
~

e

506

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on April 11,2010 at 10:09:47 UTC from IEEE Xplore.  Restrictions apply. 



We now apply, recursively, our randomized algorithm
for sorting in k - 1 rounds, to each A;, in parallel. We
claim that

Bollobas and Thomason [BT-83] improved it and showed
that

n-l+2
E (n, k) ~ (1 - 1) . n + 1 ~

;-1

for any cl < .JjJj, if n > n (Cl).

Explicit algorithms for sorting in two rounds with
o (n 2) comparisons are given in [Pi-85], [AI-85] and
[Pi-861

[
. ]1-2 1+_1
~ c (k - 1) . (i - 1) k-l
n - 1

Here we slightly improve both bounds and show

Theorem 3.3

n (n 3/2 .Jlogn) ~ c (2, n) ~ 0 [n 3/2 logn ].
.Jloglogn

l-l 1+_1_
~ (1 + 0 (1» n k. e-(j-I) . j k-l. n .

The upper bounds in Theorem 3.3 and in Proposition
3.5 are proved by combining certain probabilistic
arguments with some of the ideas of [BT-83] and [Pi­
861 The details will appear somewhere else. Here we

(iO For any function w(n) ~ 00,

a (n) ~ n . logn . loglogn . w(n) .

An upper bound of O(n l +l /k logn) for c(k, n) is
known, as indicated in the introduction.

Our methods also enable us to improve the known
bounds for approximate sorting in one round. An
algorithm that approximately sorts n elements in one
round with p comparisons is a set of p pairs of elements
(a;, b;)f-l from the set V of n elements we have to sort,
such that for each possible set of answers for the p
questions "is a; < b;" the relative order of all but 0 (n 2)

of the pairs of elements of V will be known. Let a (n)
denote the minimum p such that an approximate sorting
algorithm in one round with p comparisons exists.
Bollobas and Rosenfeld studied these algorithms in
[BR-81] (also see [BHe-85]) and their results imply that
for every fixed E > 0 a (n) = 0 (n 1+E).

M. Rabin (cf. [BHe-85]) asked whether
a (n) = 0 (n log n). The next proposition shows that this
is false.

Proposition 3.5

(i) lim a (n)/n logn ~ 00. More precisely; for
n-oo

every E > 0, any two rounds sorting algorithm that uses
at most En 2 comparisons in the second round must use

n (1- n log n) comparisons in the first round.
E

We also prove:

Theorem 3.4

For every fixed k ~ 2

c (k, n) = n (n 1+1/k Oogn) Ilk) .

[
. ]1-2 1+_1
~ . (i - 1) k-l
n - 1~

(j-I) n-l <; ~j.!!::l
1-2 1-2

l+ l
that E (n, k) ~ c (k) . n k for a properly defined
constant c (k). This completes the proof.

1+_1_

Since the sum ~ j k-l. e- j converges, this implies
j~1

Remark 3.2

We can show that Theorem 3.1 is sharp for k = 2 in
the sense that for every randomized algorithm for sorting
n elements in two rounds there is an input for which the
expected number of comparisons of the algorithm is
n (n 3/2) . We do not know if the theorem is sharp for
larger values of k.

3.2 Lower and upper deterministic bounds

E:ven the first nontrivial case, that of sorting n
elements in two rounds, received considerable attention.
Haggkvist and Hell [HH-81] showed that

l..n 3/2 - l..n ~ c (2 n) = 0 (n 5/310gn) .8 2 ~ ,

Indeed, there are (/ ::. 1) ways to choose the set T,

and for each fixed j, 1 ~ j ~ 1, the number of these
choices with IAj I = i-I (for 1 ~ i ~ n - 1 + 2) is
precisely the number of ways to write n - 1 - i + 2 as
an ordered sum of 1 - 1 non-negative integers
(representing the cardinalities of the blocks As besides

A j ), which is (7 -=-1)·
To estimate the right hand side of the last inequality

we break the sum into consecutive blocks, each of size
l- l

-- (n - 1) /(1 - 2) ::::: n k , and notice that
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present the proofs of the lower bounds in Theorems 3.3,
3.4 and Proposition 3.5. A crucial lemma here is the
following result.

Lemma 3.6

Every graph with n vertices and at most d n edges,
contains an induced subgraph with In/4J vertices and
maximum degree at most 4d which has a 4d proper
vertex coloring with color classes VI V 2 , ... , V 4d such
that for each 1 ~ i < i + j ~ 4d a~d each v E Vj, v
has at most 2j +I neighbors in Vi+j •

Proof Let G = (V, E) be a graph with n vertices and
at most d n edges. Since the sum of the degrees of all
vertices of G is at most 2d n, not more than half of the
vertices have degrees ~ 4d, and thus G contains an
induced subgraph K on a set U of at least n/2 vertices
with maximum degree smaller than 4d. By a standard
result from extremal graph theory, K has a proper 4d
vertex coloring. Let U l' U2 ,... , U4d be the color classes.
For every vertex u of K, let N (u) denote the set of all
its neighbors in K. For a permutation 7r of 1, 2 ,... , 4d
and any vertex u of K, define the 7r-degree d (7r, u) of u
as follows; let i satisfy u E U1r(;) then

4d-i
d(7r, u) = ~ IN(u) n U1r(i+j) I /2j

.
j-O

We claim that the expected value of d(7r, u) over all
permutations 7r of {I,... , 4d} is at most 1. Indeed, for a
random permutation 7r the probability that a fixed
neighbor v of u will contribute 1/2r to d (7r, u) is at
most 1/4d for all r > O. Hence each neighbor
contributes to this expected value at most

.l....d ~ 1/2r = 1/4d, and the desired result follows since
4 r>O

IN(u) I ~ 4d.

Consider now the sum ~ d(7r, u). The expected
u E U

value of this sum (over all 7r's) is at most IU I, by the
preceding paragraph. Hence there is a fixed
permutation (1 such that ~ d «(1, u) ~ IU I. It follows

u E U
that d «(1, u) ~ 2 for at least IU I/2 ~ n/4 vertices u of
K. Let W be a set of ln /4J of these vertices, let H be
the induced subgraph of G on Wand define
Vi = U(1(;) n W (1 ~ i ~ 4d). Clearly, for every
1 ~ i < 4d and every v E Vi

~ IN(u) n Vi +j I /2j ~ 2
j>O

and thus v has at most 2j +I neighbors in Vi +j . This
completes the proof.

Lemma 3.7

Every graph G = (V, E) with n vertices and at most
n . d edges, where d = 0 (n) and d = 0 (logn) , has an
acyclic orientation whose transitive closure has at most

(~) - n [~ log ; ) edges.
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Proof By Lemma 3.6 there is a subset W of
cardinality In/4J of V and a proper 4d vertex coloring
of the induced subgraph of G on W with color classes
VI' ... ' V 4d satisfying the conclusions of the lemma. Put
Vo = V - (VI U ... U V 4d ) and orient each edge (u, v)

of G with u E Vi' v E Vj and 0 ~ i < j ~ 4d from u
to v. The other edges of V (that join two members of
Yo) will be oriented in an arbitrary acyclic order. Let T
be the transitive closure of this oriented graph. For
v E V, let NT (v) denote the set of neighbors of v in T.
Suppose v E Yj, 1 ~ i < i + j ~ 4d. We claim that
the number of directed paths in our oriented G that start

j 3"
at v and end at some member of U Vi +r is at most 2 J.

r-l
Indeed, each such path must be of the form v, vi I

vi
2

••• Vi,' where

i < i l < i 2 < ... < ir ~ i + j , vii EVil ,... , vi, E Vi, .

There are 2j possibilities for choosing iI' i 2 , .•• , ir , and
since each vertex of the path is a neighbor of the

. h 2il - i +I h· Cp~e~lous one, t ere are at most c olces lor Vi I'

2' 2-
'

1+1 h· C
C olces lor Vi

2
, etc. Hence the total number of

paths is smaller than 23j and thus if v E Vi then

INT(v) n (0 Vi +r ) I < 23j .

r-I

Put r = l ~ log2 [ 4
n
d ) J, and partition the set of blocks

VI' V 2 , ..• , V 4d into s = r4d 1 blocks WI ,... , Ws of
r

consecutive Vi -s' each containing at most r blocks. By
the preceding paragraph, the total number of edges of T
in each block Jfj is not bigger than

IWj I · 23r ~ IWi I .J"fi Thus there are at least

±[I~il) _!!:.. [~)1/2
i-I 4 4d

pairs of elements that are not adjacent in T. By the

convexity of the function g (x) = [~]

s [ IWi I) [~ [ n
2

log (;)
~ 2 ~s 2 =0
i-I d

[

n2 log ;
=0

d

and thus T does not contain at least
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edges. This completes the proof.

We can now prove the lower bounds in Theorems 3.3,
3.4 and in Proposition 3.5.

To prove the lower bound in Theorem 3.3, consider
any two rounds algorithm that sorts a set V of n
elements. The first round of the algorithm consists of
some set E of comparisons. Define d by IE ~ = n . d.
Clearly we may assume that d = 0 (n 13) and
d = O(n I/3). By Lemma 3.7 the graph G = (V, E) has
an acyclic orientation whose transitive closure misses

n [n; log n] edges. If the answers in the first round

correspond to this orientation then clearly in the second
round the algorithm has to compare all these

n [n; log n1 pairs. Thus, by the trivial inequality

a +b ~ 2~

c(2, n) ~ n d + n [n; log n]

~ n (n 3/2 Oogn) 1/2) , as needed.

The proof of Proposition 3.5 part 0) is analogous. If a
two rounds sorting algorithm uses C •n log n comparisons
in the first round, then by Lemma 3.7, it must use

n [ n
c

2
] comparisons in the second round.

Theorem 3.4 is derived from the lower bound of
Theorem 3.3 proved above by induction on k, starting
with k == 2. For k = 2, the result is just the statement
of Theorem 3.3. Suppose, by induction, that

1+.1
c(k, n) ~ ck n k Oogn) 11k, where ck > 0 is a
constant, depending only on k. Consider an algorithm
for sorting a set V of n elements in k + 1 rounds. Let
E be the set of comparisons between pairs of elements of
V made in the first round. As before, E corresponds to
a set of edges of a graph G == (V, E). Define d by
IE I == d . n. By a standard result from extremal graph
theory (that follows, e.g., from the trivial part of Lemma
3.6), any graph with m vertices and average degree j,
contains an independent set of size 0 (m /j) . By a
repeated application of this, we conclude that G contains
o (d) independent sets, each of size n (n/d). Denote
these sets by VI ,... , Vs (s == n (d» and define

s

Vo - V -.U Vi' Restrict our attention now only to
;-1

linear orders on V for which each v; E V; is smaller
than each Vj E Vj' for all 0 ~ i < j ~ s. Clearly, if
o < i ~ s, and u, v E Vi we do not have any
information about the relative order of u and v from the
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results of the first round, and such an information can
be obtained only from comparisons between elements of
V;. Thus, in the next k rounds, all the sets VI'.'.' Vs
have to be sorted. By the induction hypothesis the
number of comparisons for this task is at least

s
~ ck IVj 1

1+1/k Oog IVj 1)l/k
;-1

The total number of comparisons is thus at least

nd + n(n1+l/k(Iog ;)I/k /d 1/k) .

One can easily check that this number is
~ n (n l+l/(k+I) . Oogn) I/(k+I). (Indeed, at least one
of the two summands must be that big). This completes
the induction and Theorem 3.4 follows.
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